Tropism modification of adenovirus vectors by peptide ligand insertion into various positions of the adenovirus serotype 41 short-fiber knob domain.
نویسندگان
چکیده
Recombinant adenoviruses have emerged as promising agents in therapeutic gene transfer, genetic vaccination, and viral oncolysis. Therapeutic applications of adenoviruses, however, would benefit substantially from targeted virus cell entry, for example, into cancer or immune cells, as opposed to the broad tropism that adenoviruses naturally possess. Such tropism modification of adenoviruses requires the deletion of their natural cell binding properties and the incorporation of cell binding ligands. The short fibers of subgroup F adenoviruses have recently been suggested as a tool for genetic adenovirus detargeting based on the reduced infectivity of corresponding adenovectors with chimeric fibers in vitro and in vivo. The goal of our study was to determine functional insertion sites for peptide ligands in the adenovirus serotype 41 (Ad41) short fiber knob. With a model peptide, CDCRGDCFC, we could demonstrate that ligand incorporation into three of five analyzed loops of the knob, namely, EG, HI, and IJ, is feasible without a loss of fiber trimerization. The resulting adenovectors showed enhanced infectivity for various cell types, which was superior to that of viruses with the same peptide fused to the fiber C terminus. Strategies to further augment gene transfer efficacy by extension of the fiber shaft, insertion of tandem copies of the ligand peptide, or extension of the ligand-flanking linkers failed, indicating that precise ligand positioning is pivotal. Our study establishes that internal ligand incorporation into a short-shafted adenovirus fiber is feasible and suggests the Ad41 short fiber with ligand insertion into the top (IJ loop) or side (EG and HI loops) of the knob domain as a novel platform for genetic targeting of therapeutic adenoviruses.
منابع مشابه
Adenoviruses Using the Cancer Marker EphA2 as a Receptor In Vitro and In Vivo by Genetic Ligand Insertion into Different Capsid Scaffolds
Adenoviral gene therapy and oncolysis would critically benefit from targeted cell entry by genetically modified capsids. This requires both the ablation of native adenovirus tropism and the identification of ligands that remain functional in virus context. Here, we establish cell type-specific entry of HAdV-5-based vectors by genetic ligand insertion into a chimeric fiber with shaft and knob do...
متن کاملModulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein.
The efficacy of adenovirus (Ad)-based gene therapy might be significantly improved if viral vectors capable of tissue-specific gene delivery could be developed. Previous attempts to genetically modify the tropism of Ad vectors have been only partially successful, largely due to the limited repertoire of ligands that can be incorporated into the Ad capsid. Early studies identified stringent size...
متن کاملDependence of adenovirus infectivity on length of the fiber shaft domain.
One of the objectives in adenovirus (Ad) vector development is to target gene delivery to specific cell types. Major attention has been given to modification of the Ad fiber knob, which is thought to determine virus tropism. However, among the human Ad serotypes with different tissue tropisms, not only the knob but also the length of the fiber shaft domain varies significantly. In this study we...
متن کاملAdenovirus fiber shaft contains a trimerization element that supports peptide fusion for targeted gene delivery.
Adenoviral (Ad) vectors have been widely used in human gene therapy clinical trials. However, their application has frequently been restricted by the unfavorable expression of cell surface receptors critical for Ad infection. Infections by Ad2 and Ad5 are largely regulated by the elongated fiber protein that mediates its attachment to a cell surface receptor, coxsackie and adenovirus receptor (...
متن کاملEnhanced Gene Delivery to Human Primary Endothelial Cells Using Tropism-Modified Adenovirus Vectors.
Endothelial cells have been noted to have relatively low expression of the native receptor for adenovirus serotype 5 (Ad5), coxsackie and adenovirus receptor (CAR), and are thus refractory to Ad5 infection. In this study, we hypothesize that increases in the infectivity of Ad5 in primary human pulmonary artery (HPAEC), coronary artery (HCAEC) and umbilical vein endothelial cells (HUVEC) can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 81 6 شماره
صفحات -
تاریخ انتشار 2007